340 research outputs found

    Hypomorphy of graphs up to complementation

    Full text link
    Let VV be a set of cardinality vv (possibly infinite). Two graphs GG and GG' with vertex set VV are {\it isomorphic up to complementation} if GG' is isomorphic to GG or to the complement Gˉ\bar G of GG. Let kk be a non-negative integer, GG and GG' are {\it kk-hypomorphic up to complementation} if for every kk-element subset KK of VV, the induced subgraphs G_KG\_{\restriction K} and G_KG'\_{\restriction K} are isomorphic up to complementation. A graph GG is {\it kk-reconstructible up to complementation} if every graph GG' which is kk-hypomorphic to GG up to complementation is in fact isomorphic to GG up to complementation. We give a partial characterisation of the set S\mathcal S of pairs (n,k)(n,k) such that two graphs GG and GG' on the same set of nn vertices are equal up to complementation whenever they are kk-hypomorphic up to complementation. We prove in particular that S\mathcal S contains all pairs (n,k)(n,k) such that 4kn44\leq k\leq n-4. We also prove that 4 is the least integer kk such that every graph GG having a large number nn of vertices is kk-reconstructible up to complementation; this answers a question raised by P. Ill

    Voronoi Growth Model of Sheet Nacre.

    No full text
    The aim of this work was to study the tiling mode of nacre tablets in the 'brick and mortar' array of sheet nacre. For that purpose, incipient shell nacre (Pinctada margaritifera) was analysed by electron microscopy (SEM) and Raman spectroscopy. Experimental observations pointed out the key role of the stairs-like growing front in sheet-like nacre not only for its long range ordering but also as controlling the hierarchy of local mechanisms. A morphogenesis sequence is proposed taking into account the dynamics of the environment. First, the mantel cells are organised to synthesise and discharge alternatively the extrapallial fluid as batches. Because of the stairs-like feature of the growth front, the extrapallial fluid organizes as successive 'biological films', each of them delayed from the underlying one by 10 to 15µm. Each film is a compartment to prefigure a nacre layer. Then, after individualisation, this film undergoes nucleation and crystallisation of tablets. Finally, the biological film transforms progressively as mature nacre following self assembly mechanisms. The resulting tablets have a shape which responds to a Voronoi growth model, this is shown for the first time: aggregation at the same speed in all directions around single growth centers. This is an efficient model to understand the growth mechanism and rationalise all the experimental observations we have obtained

    Sheet nacre growth mechanism: a Voronoi model.

    Get PDF
    Xavier Bourrat is in ISTO's lab since January 2005International audienceShell nacre (mother of pearl) of Pinctada margaritifera was analyzed by scanning electron microscopy. The originality of this work concerns the sampling performed to observe incipient nacre on the mantle side. The whole animal is embedded in methyl methacrylate followed by separation of the shell from the hardened mantle. It is revealed this way how each future nacre layer pre-exists as a film or compartment. Experimental observations also show for the first time, the progressive lateral crystallization inside this film, finishing under the form of a non-periodic pattern of polygonal tablets of bio-aragonite. It is evidenced that nuclei appear in the film in the vicinity of the zone where aragonite tablets of the underlying layer get in contact to each other. A possible explanation is given to show how nucleation is probably launched in time and space by a signal coming from the underlying layer. Finally, it is evidenced that tablets form a Voronoi tiling of the space: this suggests that their growth is controlled by an "aggregation-like" process of "crystallites" and not directly by the aragonite lattice growth

    Application de la théorie de l'information pour l'extraction passive radar en guerre électronique marine

    Get PDF
    Dans l'environnement électromagnétique naval, les impulsions émises par les radars sont recueillies par des récepteurs passifs. Ces impulsions sont regroupées en blocs selon la similitude de certains paramètres. Le but de cette étude est alors de mettre en place un critère de regroupement des blocs d'impulsions pour reconstruire les formes d'ondes émises par les radars. Cela doit permettre d'obtenir une meilleure qualité d'identification d'émetteur. La méthode de regroupement des blocs utilisée est une méthode de fusion basée sur un calcul d'entropie, l'entropie permettant d'estimer le degré de désordre du signal obtenu pour les cas de fusion envisagés

    Electroweak Symmetry Breaking induced by Dark Matter

    Get PDF
    The mechanism behind Electroweak Symmetry Breaking (EWSB) and the nature of dark matter (DM) are currently among the most important issues in high energy physics. Since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the Inert Doublet Model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet. The coupling of the latter with the Standard Model Higgs doublet breaks the electroweak symmetry at one-loop, "a la Coleman-Weinberg". The abundance of dark matter, the breaking of the electroweak symmetry and the constraints from electroweak precision measurements can all be accommodated by imposing an (exact or approximate) custodial symmetry.Comment: 4 pages, no figure, one tabl

    Trametinib Induces the Stabilization of a Dual GNAQ p.Gly48Leu- and FGFR4 p.Cys172Gly-Mutated Uveal Melanoma. The Role of Molecular Modelling in Personalized Oncology.

    Get PDF
    We report a case of an uveal melanoma patient with GNAQ p.Gly48Leu who responded to MEK inhibition. At the time of the molecular analysis, the pathogenicity of the mutation was unknown. A tridimensional structural analysis showed that Gα <sub>q</sub> can adopt active and inactive conformations that lead to substantial changes, involving three important switch regions. Our molecular modelling study predicted that GNAQ p.Gly48Leu introduces new favorable interactions in its active conformation, whereas little or no impact is expected in its inactive form. This strongly suggests that GNAQ p.Gly48Leu is a possible tumor-activating driver mutation, consequently triggering the MEK pathway. In addition, we also found an FGFR4 p.Cys172Gly mutation, which was predicted by molecular modelling analysis to lead to a gain of function by impacting the Ig-like domain 2 folding, which is involved in FGF binding and increases the stability of the homodimer. Based on these analyses, the patient received the MEK inhibitor trametinib with a lasting clinical benefit. This work highlights the importance of molecular modelling for personalized oncology

    Influence of temperature and soda concentration in a thermo-mechano-chemical pretreatment for bioethanol production from sweet corn co-products

    Get PDF
    A continuous process combining an alkaline pretreatment, neutralization and injection of enzymes within a twin screw extruder was previously implemented and demonstrate industrial potential. The present work focuses on the investigation of the effects of alkali and temperature during the alkaline pretreatment of sweet corn co-products (SCC) for the production of fermentable sugars with a lower chemical input. Study of NaOH/SCC and internal temperature was performed in ranges of 4–8% (w/w) and 50–170 °C in a laboratory scale twin screw extruder. Analysis of carbohydrates and lignin of the pretreated biomass was performed and the filtration efficiency was also monitored through extrudate dry matter and filtrate mineral matter. The carbohydrate accessibility and process performances were studied by the enzymatic hydrolysis of the extrudate. Increasing temperature reinforces the effects of soda on solubilization of hemicelluloses, thus a hemicelluloses removal reach more than 50%. At optimal conditions, the cellulose-rich substrate after enzymatic hydrolysis achieve a glucose released of 70%, with glucose and xylose yields of 250 g per 1Kg of dry SCC
    corecore